设为首页收藏本站language 语言切换
查看: 1637|回复: 0
收起左侧

PyTorch-GPU加速实例

[复制链接]
发表于 2021-7-2 10:33:49 | 显示全部楼层 |阅读模式
这篇文章主要介绍了PyTorch-GPU加速实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

硬件:NVIDIA-GTX1080

软件:Windows7、python3.6.5、pytorch-gpu-0.4.1

一、基础知识

将数据和网络都推到GPU,接上.cuda()

二、代码展示

[size=1em]
[size=1em]1

[size=1em]2

[size=1em]3

[size=1em]4

[size=1em]5

[size=1em]6

[size=1em]7

[size=1em]8

[size=1em]9

[size=1em]10

[size=1em]11

[size=1em]12

[size=1em]13

[size=1em]14

[size=1em]15

[size=1em]16

[size=1em]17

[size=1em]18

[size=1em]19

[size=1em]20

[size=1em]21

[size=1em]22

[size=1em]23

[size=1em]24

[size=1em]25

[size=1em]26

[size=1em]27

[size=1em]28

[size=1em]29

[size=1em]30

[size=1em]31

[size=1em]32

[size=1em]33

[size=1em]34

[size=1em]35

[size=1em]36

[size=1em]37

[size=1em]38

[size=1em]39

[size=1em]40

[size=1em]41

[size=1em]42

[size=1em]43

[size=1em]44

[size=1em]45

[size=1em]46

[size=1em]47

[size=1em]48

[size=1em]49

[size=1em]50

[size=1em]51

[size=1em]52

[size=1em]53

[size=1em]54

[size=1em]55

[size=1em]56

[size=1em]57

[size=1em]58

[size=1em]59

[size=1em]60

[size=1em]61

[size=1em]62

[size=1em]63

[size=1em]64

[size=1em]65

[size=1em]66

[size=1em]67

[size=1em]68

[size=1em]69

[size=1em]70

[size=1em]71

[size=1em]72

[size=1em][size=1em]import torch
[size=1em]import torch.nn as nn
[size=1em]import torch.utils.data as Data
[size=1em]import torchvision
[size=1em]# torch.manual_seed(1)
[size=1em]  
[size=1em]EPOCH = 1
[size=1em]BATCH_SIZE = 50
[size=1em]LR = 0.001
[size=1em]DOWNLOAD_MNIST = False
[size=1em]  
[size=1em]train_data = torchvision.datasets.MNIST(root='./mnist/', train=True, transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST,)
[size=1em]train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
[size=1em]  
[size=1em]test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
[size=1em]  
[size=1em]# !!!!!!!! Change in here !!!!!!!!! #
[size=1em]test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000].cuda()/255. # Tensor on GPU
[size=1em]test_y = test_data.test_labels[:2000].cuda()
[size=1em]  
[size=1em]class CNN(nn.Module):
[size=1em] def __init__(self):
[size=1em]  super(CNN, self).__init__()
[size=1em]  self.conv1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2,),
[size=1em]         nn.ReLU(), nn.MaxPool2d(kernel_size=2),)
[size=1em]  self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2),)
[size=1em]  self.out = nn.Linear(32 * 7 * 7, 10)
[size=1em]  
[size=1em] def forward(self, x):
[size=1em]  x = self.conv1(x)
[size=1em]  x = self.conv2(x)
[size=1em]  x = x.view(x.size(0), -1)
[size=1em]  output = self.out(x)
[size=1em]  return output
[size=1em]  
[size=1em]cnn = CNN()
[size=1em]  
[size=1em]# !!!!!!!! Change in here !!!!!!!!! #
[size=1em]cnn.cuda()  # Moves all model parameters and buffers to the GPU.
[size=1em]  
[size=1em]optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
[size=1em]loss_func = nn.CrossEntropyLoss()
[size=1em]  
[size=1em]for epoch in range(EPOCH):
[size=1em] for step, (x, y) in enumerate(train_loader):
[size=1em]  
[size=1em]  # !!!!!!!! Change in here !!!!!!!!! #
[size=1em]  b_x = x.cuda() # Tensor on GPU
[size=1em]  b_y = y.cuda() # Tensor on GPU
[size=1em]  
[size=1em]  output = cnn(b_x)
[size=1em]  loss = loss_func(output, b_y)
[size=1em]  optimizer.zero_grad()
[size=1em]  loss.backward()
[size=1em]  optimizer.step()
[size=1em]  
[size=1em]  if step % 50 == 0:
[size=1em]   test_output = cnn(test_x)
[size=1em]  
[size=1em]   # !!!!!!!! Change in here !!!!!!!!! #
[size=1em]   pred_y = torch.max(test_output, 1)[1].cuda().data # move the computation in GPU
[size=1em]  
[size=1em]   accuracy = torch.sum(pred_y == test_y).type(torch.FloatTensor) / test_y.size(0)
[size=1em]   print('Epoch: ', epoch, '| train loss: %.4f' % loss, '| test accuracy: %.2f' % accuracy)
[size=1em]  
[size=1em]test_output = cnn(test_x[:10])
[size=1em]  
[size=1em]# !!!!!!!! Change in here !!!!!!!!! #
[size=1em]pred_y = torch.max(test_output, 1)[1].cuda().data # move the computation in GPU
[size=1em]  
[size=1em]print(pred_y, 'prediction number')
[size=1em]print(test_y[:10], 'real number')




三、结果展示




您需要登录后才可以回帖 登录 | 论坛注册

本版积分规则

QQ|Archiver|手机版|小黑屋|sitemap|鸿鹄论坛 ( 京ICP备14027439号 )  

GMT+8, 2025-5-16 00:07 , Processed in 0.066017 second(s), 24 queries , Redis On.  

  Powered by Discuz!

  © 2001-2025 HH010.COM

快速回复 返回顶部 返回列表