设为首页收藏本站language→→ 语言切换

鸿鹄论坛

 找回密码
 论坛注册

QQ登录

先注册再绑定QQ

查看: 1050|回复: 2
收起左侧

又惊呆了!预测路况都用大数据

[复制链接]
发表于 2016-1-26 16:05:53 | 显示全部楼层 |阅读模式
  准确、及时预测路况一直是交通组织工作中的难题,尤其是早晚高峰,即便是官方发布的拥堵指数也会有一定的延时,对行在途中的司机来说,彼时的“通 畅”可能已经成了此时的“拥堵”。记者从浙江省交通厅了解到,目前交通厅正在进行一项新的试点——通过阿里云的大数据,来分析预测未来1小时内的路况。




                               
登录/注册后可看大图


  目前在高速公路的试点中,省交通厅把高速公路的历史数据、实时数据与路网状况结合,基于阿里云大数据计算能力,预测出未来1小时内的路况。多次的试验结果显示,预测准确率稳定在91%以上。



从手机信号看道路通行状况


  阿里云的大数据计算是多位资深数据专家联合研发的。据介绍,对于浙江省内近1300公里的高速路段,大数据计算可以在20分钟完成历史数据分析,10秒钟完成实时数据分析。


如果要把路况预测放到城区道路中,难度要更大一些。受到采集技术的制约,实时交通数据的更新时间普遍较长,有的高达15分钟,而且传统铺设线圈的方式,硬件投资金额巨大。为此,交通厅引入了一种新的技术,就是把将手机信号数据和道路通行数据进行关联。


  在城市道路上,一般每隔500米设一个运营商基站,在市郊和高速公路上大约2公里设一个运营商基站,当手机用户经过基站时,手机形成的信号数据可以 比较准确地反映出单位时间内通过该路段的实时路况变化。如果检测到的手机信号在高速公路上停止行驶,而同路段其他大部分手机信号的移动速度都下降,那么就 可以判断这一路段上可能出现事故或拥堵。


  浙江省交通信息中心主任韩海航说,从成本投入来说,相比较传统传感器采集高速路况数据,这种方式至少可以降低90%的成本,建设周期也大大缩短。通过对未来路况的预测,交通部门可以更好的进行交通引导,司机也可以根据预测,做出最优化的路线选择。


  粗略估计,如果司机能选择合适的出行方案,可以缩短5%至10%的出行时间,减少2%至10%的汽油消耗。


  综合路网、道路上下游、天气各要素只为准确性


  尽管路况预测的实用价值很高,但准确性一直是各方追求的目标。


  阿里云方面的专家说,如果仅仅基于道路通行的历史平均数据来做简单预测,那并没有实际意义。只有分析因素和维度越多,数据越丰富,得出的预测结果才会越准确。


  “路网关系、道路上下游的事件,甚至天气等外部综合因素都应该加入进来,但当这些海量数据纳入到全网路况的时空演变模型后,对云平台的大数据计算能力提出了很高的要求”。


  此前,微软曾联合巴西一所大学进行了相似的尝试,准确率为80%,后来微软在加入更多数据源后,将这一成绩提升到90%。不过,这次尝试只是在实验室里面完成,并没能应用于实际的路网预测。


  一旦未来路况的预测可以保持一个极高的准确率,就可以用来支持无人驾驶技术的发展。无人驾驶汽车除了通过各种传感器对“眼下”的数据进行快速判断外,还需要了解10分钟、20分钟后即将到达的路段状况,提前做出路线选择,那么,预测数据就可以为预判提供依据了。

发表于 2016-9-29 03:25:15 | 显示全部楼层
Google MAP used the similar method the only difference is via GPS signal not the RF to determine the traffic jam.
板凳 2016-9-29 03:25:15 回复 收起回复
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 论坛注册

本版积分规则

QQ|Archiver|手机版|小黑屋|sitemap|鸿鹄论坛 ( 京ICP备14027439号 )  

GMT+8, 2025-1-23 02:17 , Processed in 0.061522 second(s), 11 queries , Redis On.  

  Powered by Discuz!

  © 2001-2025 HH010.COM

快速回复 返回顶部 返回列表