图5-2 网络中没有RARP服务器的RARP请求 RARP服务器的设计
虽然RARP在概念上很简单,但是一个RARP服务器的设计与系统相关而且比较复杂。相反,提供一个ARP服务器很简单,通常是TCP/IP在内核中实现的一部分。由于内核知道I P地址和硬件地址,因此当它收到一个询问I P地址的A R P请求时,只需用相应的硬件地址来提供应答就可以了。 作为用户进程的RARP服务器
RARP服务器的复杂性在于,服务器一般要为多个主机(网络上所有的无盘系统)提供硬件地址到I P地址的映射。该映射包含在一个磁盘文件中(在U n i x系统中一般位于/ e t c / e t h e r s目录中)。由于内核一般不读取和分析磁盘文件,因此RARP服务器的功能就由用户进程来提供,而不是作为内核的TCP/IP实现的一部分。
更为复杂的是,RARP请求是作为一个特殊类型的以太网数据帧来传送的(帧类型字段值为0 x 8 0 3 5,如图2 - 1所示)。这说明RARP服务器必须能够发送和接收这种类型的以太网数据帧。在附录A中,我们描述了B S D分组过滤器、sun的网络接口栓以及S V R 4数据链路提供者接口都可用来接收这些数据帧。由于发送和接收这些数据帧与系统有关,因此RARP服务器的实现是与系统捆绑在一起的。 每个网络有多个RARP服务器
RARP服务器实现的一个复杂因素是RARP请求是在硬件层上进行广播的,如图5 - 2所示。这意味着它们不经过路由器进行转发。为了让无盘系统在RARP服务器关机的状态下也能引导,通常在一个网络上(例如一根电缆)要提供多个RARP服务器。当服务器的数目增加时(以提供冗余备份),网络流量也随之增加,因为每个服务器对每个RARP请求都要发送RARP应答。发送RARP请求的无盘系统一般采用最先收到的RARP应答(对于A R P,我们从来没有遇到这种情况,因为只有一台主机发送A R P应答)。另外,还有一种可能发生的情况是每个RARP服务器同时应答,这样会增加以太网发生冲突的概率。