数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。
以下都以8位整数为例,
原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1
正数的反码和补码都是和原码相同。
负数 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。 比如 00000000 00000000 00000000 00000101 是 5的
原码。 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。 取反操作指:原为1,得0;原为0,得1。(1变0; 0变1) 比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。 称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。 11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。
为什么要设立补码呢?
第一是为了能让计算机执行减法:
[a-b]补=a补+(-b)补
第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)
有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2^(n-1)到2^(n-1)-1
比n位原码能表示的数多一个 又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码
-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1
0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码
-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1 总结:
在计算机内,定点数有3种表示法:原码、反码和补码 所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。 反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。 补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。 [+0]原=00000000B [-0]原=10000000B b. 8位二进制原码的表示范围:-127~+127
负数:负数的反码,符号位为“1”,数值部分按位取反。
b. 8位二进制反码的表示范围:-127~+127 1)模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。 同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为28=256。在计算中,两个互补的数称为“补码”。
负数:负数的补码则是符号位为“1”,数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
a.采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。采用补码进行运算,所得结果仍为补码。 b.与原码、反码不同,数值0的补码只有一个,即 [0]补=00000000B。 c.若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 回头看上一节,我们所讲的数都是正数。同样是年纪和工资,前者不需要有负值,但后者可能需要——至少所有的老板都这样认为。 一种是教科书,它会告诉你:计算机用“补码”表示负数。可是有关“补码”的概念一说就得一节课,这一些我们需要在第6章中用一章的篇幅讲2进制的一切。再者,用“补码”表示负数,其实一种公式,公式的作用在于告诉你,想得问题的答案,应该如何计算。却并没有告诉你为什么用这个公式就可以和答案? 另一种是一些程序员告诉你的:用二进制数的最高位表示符号,最高位是0,表示正数,最高位是1,表示负数。这种说法本身没错,可是如果没有下文,那么它就是错的。至少它不能解释,为什么字符类型的-1用二进制表示是“1111 1111”(16进制为FF);而不是我们更能理解的“1000 0001”。(为什么说后者更好理解呢?因为既然说最高位是1时表示负数,那1000 0001不是正好是-1吗?)。 就像我们必须决定某个量使用整数还是实数,使用多大的范围数一样,我们必须自已决定某个量是否需要正负。如果这个量不会有负值,那么我们可以定它为带正负的类型。 在计算机中,可以区分正负的类型,称为有符类型,无正负的类型(只有正值),称为无符类型。 数值类型分为整型或实型,其中整型又分为无符类型或有符类型,而实型则只有符类型。 比如有两个量,年龄和库存,我们可以定前者为无符的字符类型,后者定为有符的整数类型。 首先得知道最高位是哪一位?1个字节的类型,如字符类型,最高位是第7位,2个字节的数,最高位是第15位,4个字节的数,最高位是第31位。不同长度的数值类型,其最高位也就不同,但总是最左边的那位(如下示意)。字符类型固定是1个字节,所以最高位总是第7位。 双字节数: 1111 1111 1111 1111 四字节数: 1111 1111 1111 1111 1111 1111 1111 1111 当我们指定一个数量是无符号类型时,那么其最高位的1或0,和其它位一样,用来表示该数的大小。 当我们指定一个数量是无符号类型时,此时,最高数称为“符号位”。为1时,表示该数为负值,为0时表示为正值。 无符号数中,所有的位都用于直接表示该值的大小。有符号数中最高位用于表示正负,所以,当为正值时,该数的最大值就会变小。我们举一个字节的数值对比: 无符号数: 1111 1111 值:255 1* 27 + 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 有符号数: 0111 1111 值:127 1* 26 + 1* 25 + 1* 24 + 1* 23 + 1* 22 + 1* 21 + 1* 20 同样是一个字节,无符号数的最大值是255,而有符号数的最大值是127。原因是有符号数中的最高位被挪去表示符号了。并且,我们知道,最高位的权值也是最高的(对于1字节数来说是2的7次方=128),所以仅仅少于一位,最大值一下子减半。 不过,有符号数的长处是它可以表示负数。因此,虽然它的在最大值缩水了,却在负值的方向出现了伸展。我们仍一个字节的数值对比: 无符号数: 0 ----------------- 255 有符号数: -128 --------- 0 ---------- 127 同样是一个字节,无符号的最小值是 0 ,而有符号数的最小值是-128。所以二者能表达的不同的数值的个数都一样是256个。只不过前者表达的是0到255这256个数,后者表达的是-128到+127这256个数。 有符号的数据类型的最大值的计算方法完全和无符号一样,只不过它少了一个最高位(见第3点)。但在负值范围内,数值的计算方法不能直接使用1* 26 + 1* 25 的公式进行转换。在计算机中,负数除为最高位为1以外,还采用补码形式进行表达。所以在计算其值前,需要对补码进行还原。这些内容我们将在第六章中的二进制知识中统一学习。 以我们原有的数学经验,在10进制中:1 表示正1,而加上负号:-1 表示和1相对的负值。 那么,我们会很容易认为在2进制中(1个字节): 0000 0001 表示正1,则高位为1后:1000 0001应该表示-1。 首先我们看到,从-1到-128,其二进制的最高位都是1(表中标为红色),正如我们前面的学。 然后我们有些奇怪地发现,1000 0000 并没有拿来表示 -0;而1000 0001也不是拿来直观地表示-1。事实上,-1 用1111 1111来表示。 怎么理解这个问题呢?先得问一句是-1大还是-128大? 当然是 -1 大。-1是最大的负整数。以此对应,计算机中无论是字符类型,或者是整数类型,也无论这个整数是几个字节。它都用全1来表示 -1。比如一个字节的数值中:1111 1111表示-1,那么,1111 1111 - 1 是什么呢?和现实中的计算结果完全一致。1111 1111 - 1 = 1111 1110,而1111 1110就是-2。这样一直减下去,当减到只剩最高位用于表示符号的1以外,其它低位全为0时,就是最小的负值了,在一字节中,最小的负值是1000 0000,也就是-128。 我们以-1为例,来看看不同字节数的整数中,如何表达-1这个数: | | | | | | | | | | 1111 1111 1111 1111 1111 1111 1111 1111 | |
可能有同学这时会混了:为什么 1111 1111 有时表示255,有时又表示-1?所以我再强调一下本节前面所说的第2点:你自已决定一个数是有符号还是无符号的。写程序时,指定一个量是有符号的,那么当这个量的二进制各位上都是1时,它表示的数就是-1;相反,如果事选声明这个量是无符号的,此时它表示的就是该量允许的最大值,对于一个字节的数来说,最大值就是255。 我们已经知道计算机中,所有数据最终都是使用二进制数表达。 我们也已经学会如何将一个10进制数如何转换为二进制数。 比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为: 00000000 00000000 00000000 00000101 5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。 比如 00000000 00000000 00000000 00000101 是 5的
原码。 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。 取反操作指:原为1,得0;原为0,得1。(1变0; 0变1) 比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。 称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。 11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。 也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。 比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。 11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011 所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。 1、先取1的原码:00000000 00000000 00000000 00000001 2、得反码: 11111111 11111111 11111111 11111110 3、得补码: 11111111 11111111 11111111 11111111 可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF |